If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-22x=6
We move all terms to the left:
8x^2-22x-(6)=0
a = 8; b = -22; c = -6;
Δ = b2-4ac
Δ = -222-4·8·(-6)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-26}{2*8}=\frac{-4}{16} =-1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+26}{2*8}=\frac{48}{16} =3 $
| (13·24)·16=13·(q·16) | | -161=5a-8(-2a+7) | | 32+(39+71)=(32+b)+71 | | 23+c=28+23 | | x³=-343/1331 | | 7x-23x-20=0 | | w+4.84=6.58 | | -2(x-3)^2=-8 | | y-4.39=8.27 | | 6x=4x=12 | | 15x=12x+8 | | 67·y=67 | | 58·(82·46)=(58·x)·46 | | -6(1+5x)=-156 | | w·5=5·86 | | 58x+52=-78x−78 | | -4(x-1)=5x-4 | | (41+89)+49=r+(89+49) | | 1+x-8=12 | | -86=2(5p-8) | | (54+25)·z=54·63+25·63 | | 3r=687 | | 0·82=x | | M=-1b=-2 | | 83x+83=83x+-38 | | 4(8b+7)=252 | | -5/2v=35 | | 3a+8=80 | | -5v/2=35 | | 12=-2(3+2m) | | 7x-0.02=x | | -49=-7u/6 |